Stawa Set 19

- Calculate the standard cell voltages and write the overall chemical reactions for cells which
 consist of the following half-cells
 - (a) Zn^{2+}/Zn and Sn^{2+}/Sn
 - (b) Cr3+/Cr and Ag+/Ag
 - (c) Hg²⁺/Hg and Cu²⁺/Cu
 - (d) Mg²⁺/Mg and Cu²⁺/Cu
 - (e) Mg²⁺/Mg and Ag⁺/Ag
 - (f) Fe3+/Fe2+ and Cr2O72-/Cr3+ (Cr2O72- is acidified)
 - (g) Cl₂/Cl⁻ and I₂/I⁻
- 2. Predict whether the following reactions could occur under standard conditions:
 - (a) $2MnO_4^- + 10I^- + 16H^+ \rightarrow 2Mn^{2+} + 5I_2 + 8H_2O$
 - (b) $Sn^{4+} + H_2O_2 \rightarrow Sn^{2+} + 2H^+ + O_2$
 - (c) $Cr_2O_7^{2-} + 6F^- + 14H^+ \rightarrow 2Cr^{3+} + 3F_2 + 7H_2O$
 - (d) $Cu + 2H^+ \rightarrow Cu^{2+} + H_2$
 - (e) $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$
- 3. (a) Which of the following species could react with 1 mol L⁻¹ HCl to form hydrogen gas?
 - (i) Cu
 - (ii) Mg
 - (iii) Hg
 - (iv) Ag
 - (v) Sn
 - (vi) Zn
 - (b) From the table of reduction potentials supplied, identify
 - (i) a reducing agent which could convert Pb2+ to Pb, but not Co2+ to Co.
 - (ii) an oxidising agent which could convert CI- to Cl2, but not F- to F2.
 - (iii) a reductant which could convert H+ to H2, but not H2O to H2.
 - (iv) an oxidant which could convert Ag to Ag+, but not Hg to Hg2+.
 - (v) a reductant which could convert acidified MnO₄- to Mn²+, but not acidified Cr₂O₇²- to Cr₃³+.
- 4. Predict whether the following disproportionation reactions could occur in aqueous solution:
 - (a) copper(I) ion to copper(II) ion and copper metal
 - (b) Iron(II) ion to iron(III) ion and iron metal
 - (c) hydrogen peroxide to water and oxygen gas
 - (d) chlorine to hypochlorous acid and chloride ion
 - (e) manganese dioxide to permanganate ion and manganese(II) ion
- Predict whether reactions could occur in each of the following. Assume standard conditions.
 - (a) Chlorine gas is bubbled through potassium bromide solution.
 - (b) Iron(II) nitrate is mixed with sodium iodide.
 - (c) Aluminium is added to hydrochloric acid.
 - (d) An iron nail is placed in a tin(II) chloride solution.
 - (e) An iron(II) sulfate solution is placed in a nickel container.
 - (f) Hydrogen sulfide is bubbled through an acidified potassium dichromate solution.
 - (g) Chlorine gas is bubbled through an acidified solution of barium nitrate.
 - (h) Chlorine gas is bubbled through an acidified solution of iron(II) bromide.

STAWA SET 19: SOLUTIONS

Set 19

1. (a)
$$Zn + Sn^{2+} \rightarrow Zn^{2+} + Sn$$
 , +0.62V

(b)
$$3Ag^+ + Cr \rightarrow 3Ag + Cr^{3+}$$
 , +1.54V

(c)
$$Hg^{2+} + Cu \rightarrow Hg + Cu^{2+}$$
 , +0.51V

(d)
$$Mg + Cu^{2+} \rightarrow Mg^{2+} + Cu + 2.70V$$

(e)
$$Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$$
 , +3.16V

(f)
$$Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 2Cr^{3+} + 7H_2O + 6Fe^{3+}$$
, +0.56V

(g)
$$Cl_2 + 2l^- \rightarrow 2Cl^- + l_2$$
 , +0.82V

(b) No, - 0.53V

(c) No, -1.54V

(d) No, -0.34V

5. (a)
$$\text{Cl}_2 + 2\text{Br}^2 \rightarrow 2\text{Cl}^2 + \text{Br}_2$$
, $\pm 0.27\text{V}$

(b) No reaction

(c)
$$2AI + 6H^+ \rightarrow 2AI^{3+} + 3H_2$$
, +1.66V

(d) Fe +
$$Sn^{2+} \rightarrow Fe^{2+} + Sn + 0.30V$$

(e) No reaction

(f)
$$Cr_2O_7^{2-} + 3H_2S + 8H^+ \rightarrow 2Cr^{3+} + 3S + 7H_2O_1 + 1.19V$$

(g) No reaction

(h) Both Br⁻ and Fe²⁺ are oxidised